Name	Hour	

Motion Graphs - Problems and Mini Lab

PROBLEM 1:Distance vs. Time Graph This is the graph of Perry moving away from Dr. Doofenshmirtz.

- 1a) The slope of a distance vs. time graph has units of ______, so it represents______.
- **1b**) What is Perry's velocity in segment #1 (from 0-4 sec.)? (Just find the slope!)
- 1c) What is Perry's velocity in segment #2 (from 4-6 sec.)? (Just find the slope!)
- **1d)** A flat line on the graph means the object is ______.

Mini Lab- Fun With Distance vs. Time Graphs using a LabQuest

- *Turn on LabQuest (top left corner) that has dark green motion detector attached.
- *Hit button in the turquoise circle w/3 sheets of paper on it until File Graph Analyze are on the top of the screen.
- *Face the wall. When you're ready, tap the green play button on the screen and it will start graphing your motion.
- *Want to try it again? Hit the green play button again.

 You may discard your data.

2a) Play with it and try to make <u>your top RED graph</u> that looks something like the one below. (Your lines will not be as straight.) You will need to walk forward, backward or stand still to match the different segments.

W	hat	we	had	to	<u>do</u>	to	match	tha	t se	gment	of	the	gra	<u>oh:</u>

#3 _____

SUMMARIZE PART A: Distance vs. Time graphs

- 1. What units would the slope be in for a **distance vs. time** graph?
- 3. What would you do to make your **distance vs. time** graph have a **horizontal line**?

Make sure everyone in your group can do this. Your teacher will pick one of you. Teacher's initials:

_	

© Give your LabQuest to another group or plug it in by the sinks and move onto Velocity vs. Time graphs

Name	

_____ Hour ____

Problem 3: Velocity vs. Time Graphs

This is the graph of Scooby Doo running to get Scooby snacks.

- **3a)** The slope of a velocity vs. time graph has units of______, so it represents______.
- **3b)** What is Scooby Doo's acceleration for segment #1 (from 0-5 sec.)? (Just find the slope!)

What is Scooby Doo's acceleration for segment #2 (from 5-10 sec.)? (Just find the slope!)

- 3c) A flat line on a velocity vs. time graph means the object is ______.
- **3d**) Calculate how far Scooby Doo traveled by solving for the area under the line. (*Hint: Break it into a right triangle and a rectangle.*)
- **3e**) The area under the line on a velocity vs. time graph has units of _______, so it represents the object's ______,
- **3f**) Use the $\Delta x = v_i \Delta t + 1/2a \Delta t^2$ equation to measure the distance traveled during segment #1 by plugging in numbers from the graph for your variables.

*Explain what you would have to do to match the graph below. (Remember, velocity on y-axis!)

#3 _____

SUMMARIZE PART B: Velocity vs. Time Graphs

- 1. The slope of a velocity vs. time graph has units of _____ and measures _____
- 2. A horizontal line on a velocity vs. time graph means the object is ______
- 3. The area under the line (solved for using either shapes or 1-D motion equations) has units of ______, so it represents the object's _____.